These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mitochondrial Omi/HtrA2 Promotes Caspase Activation Through Cleavage of HAX-1 in Aging Heart. Author: Liu X, Lei J, Wang K, Ma L, Liu D, Du Y, Wu Y, Zhang S, Wang W, Ma X, Liu H. Journal: Rejuvenation Res; 2017 Jun; 20(3):183-192. PubMed ID: 27998213. Abstract: Mitochondrial homeostasis is a key process involved in cellular destiny and organic function. When mitochondrial status is abnormal, it will become a "death motor." Impaired mitochondria lead to the release of cytochrome c, and then trigger mitochondria-induced caspase activation. Omi/HtrA2, a serine protease, locates in mitochondria and involves in mitochondrial homeostasis. Increased Omi/HtrA2 is observed in aging cardiac tissues, and whether this has effects on mitochondrial status has not been reported. In this study, natural Sprague-Dawley rats (22 months) were used. We detected markedly increased proteolytic activity of Omi/HtrA2 and obvious activation of caspase-9 and caspase-3 in their myocardium. Then, we constructed stably transfected mitochondrial Omi/HtrA2 cells, and decreased mitochondrial membrane potential was detected by JC-1 (a probe for mitochondria) and tetramethylrhodamine methyl ester (TMRM) dyeing and significant release of cytochrome c was observed after separation of mitochondrial fraction and cytosolic fraction. Furthermore, ucf-101 (a special inhibitor of Omi/HtrA2) and HAX-1 siRNA could ameliorate those phenomena above. In conclusion, excessive Omi/HtrA2 in mitochondria induced decreased mitochondrial membrane potential by its proteolytic activity, followed by cytochrome c released from mitochondria into cytosol where cytochrome c promoted caspase activation. Also, Omi/HtrA2-HAX-1 chain played a significant role in mitochondrial homeostasis.[Abstract] [Full Text] [Related] [New Search]