These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts. Author: Hønsvall BK, Robertson LJ. Journal: Exp Parasitol; 2017 Jan; 172():61-67. PubMed ID: 27998735. Abstract: Both Cryptosporidium parvum and Cryptosporidium hominis are often associated with cryptosporidiosis in humans, but whereas humans are the main host for C. hominis, C. parvum is zoonotic and able to infect a variety of species. The oocyst transmission stages of both species of parasites are morphologically identical and molecular techniques, usually polymerase chain reaction (PCR), are required to distinguish between oocysts detected by standard methods in environmental samples, such as water. In this study, we developed two primer sets for real-time nucleic acid sequence-based amplification (NASBA), targeting the MIC1 transcript in C. parvum (CpMIC1) and C. hominis (ChMIC1). Using these primer sets, we were not only able to detect low numbers of C. parvum and C. hominis oocysts (down to 5 oocysts in 10 μl, and down to 1 oocyst using diluted RNA samples), but also distinguish between them. One of the primer sets targeted an exon only occurring in CpMIC1, thereby providing a tool for distinguishing C. parvum from other Cryptosporidium species. Although mRNA has been suggested as a tool for assessing viability of Cryptosporidium oocysts, as it is short-lived and may have high transcription, this NASBA assay detected MIC1 mRNA in inactivated oocysts. RNA within the oocysts seems to be protected from degradation, even when the oocysts have been killed by heating or freeze-thawing. Thus, our approach detects both viable and non-viable oocysts, and RNA does not seem to be a suitable marker for assessing oocyst viability.[Abstract] [Full Text] [Related] [New Search]