These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanistic Study of Tetrahydrofuran- acetogenins In Triggering Endoplasmic Reticulum Stress Response-apotoposis in Human Nasopharyngeal Carcinoma.
    Author: Juang SH, Chiang CY, Liang FP, Chan HH, Yang JS, Wang SH, Lin YC, Kuo PC, Shen MR, Thang TD, Nguyet BT, Kuo SC, Wu TS.
    Journal: Sci Rep; 2016 Dec 21; 6():39251. PubMed ID: 28000792.
    Abstract:
    For past three decades, numerous studies have elucidated the antiproliferative effects of acetogenins in hopes of developing a new class of clinical anticancer agents. However, clear and definitive action mechanisms of acetogenins were less clarified. In the present study, three tetrahydrofuran (THF)-containing acetogenins were found to have potent and selective antiproliferative activity against human nasopharyngeal carcinoma (NPC) cell lines and their methotrexate-resistant counterparts. The THF-containing acetogenins induced G2/M phase arrest, mitochondrial damage and apoptosis, and increased cytosolic and mitochondrial Ca2+ in NPCs. Microarray analysis of NPC-TW01 cells treated with squamostatin A, a non-adjacent bis-THF acetogenin, demonstrated an increased endoplasmic reticulum (ER)-stress response (ESR). Enhanced ESR in squamostatin A-treated cells was confirmed by real-time PCR, Western blot and shRNA gene knockdown experiments. Although our results showed that squamostatin A-induced ESR was independent of extracellular Ca2+, the presence of extracellular Ca2+ enhanced the antiproliferative effect of acetogenins. In vivo analyses demonstrated that squamostatin A showed good pharmacokinetic properties and significantly retarded NPC tumor growth in the xenograft mouse model. Conclusively, our work demonstrates that acetogenins are effective and selective inducers of the ESR that can block NPC proliferation, and illustrate a previously unappreciated antitumor mechanism of acetogenins that is effective against nasopharyngeal malignancies.
    [Abstract] [Full Text] [Related] [New Search]