These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MiR-129 regulates cisplatin-resistance in human gastric cancer cells by targeting P-gp.
    Author: Lu C, Shan Z, Li C, Yang L.
    Journal: Biomed Pharmacother; 2017 Feb; 86():450-456. PubMed ID: 28012924.
    Abstract:
    Development of multiple drug resistance (MDR) to chemotherapy is the major reason for the failure of gastric cancer (GC) treatment. P-glycoprotein (P-gp), which is encoded by MDR gene 1, as one of the mechanisms responsible for MDR. Mounting evidence has demonstrated that the drug-induced dysregulation of microRNAs (miRNAs) function may mediate MDR in cancer cells. However, the underling mechanisms of miRNA-mediated MDR in GC remain unclear. Here, we found that miR-129 was downregulated in cisplatin-resistant GC tissues/cells. Our results also showed that overexpression of miR-129 decreased cisplatin-resistance in cisplatin-resistant GC cells, and miR-129 knockdown reduced chemosensitivity to cisplatin in cisplatin-sensitive GC cells. Furthermore, miR-129 activated the intrinsic apoptotic pathway via upregulating caspase-9 and caspase-3. Most importantly, we further confirmed that P-gp is the functional target of miR-129 by regulating cisplatin-resistance in GC cells. These results suggested that miR-129 reversed cisplatin-resistance through inhibiting the P-gp expression in GC cells.
    [Abstract] [Full Text] [Related] [New Search]