These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ionic requirements for amino acid transport. Author: Zelikovic I, Chesney RW. Journal: Am J Kidney Dis; 1989 Oct; 14(4):313-6. PubMed ID: 2801702. Abstract: The reabsorption of amino acids by the proximal tubule is remarkably efficient. Current evidence indicates that this process occurs by Na+-amino acid cotransport or symport. The energy for amino acid entry is derived from the chemical and voltage gradient for Na+ entry across the apical surface of the renal cell maintained by pumping Na+ out of the cell by Na+-K+-adenosine triphosphatase (ATPase) activity at the basolateral membrane. We chose the beta-amino acid taurine to study the anionic requirements as well as voltage- and pH-dependence of Na+-taurine symport into rat proximal tubule brush border membrane vesicles. Maximal uptake was found when Cl- or Br- were the anions. The addition of various ionophores (amiloride, carbonyl cyanide-n chlorophenyl-hydrazone, and valinomycin) under pH-equilibrated conditions did not change taurine entry into the vesicle. Hill equation analysis of the initial rate of taurine uptake into vesicles indicates that transport operates by means of a 2 Na+:1 Cl-:1 taurine-carrier complex. Because taurine is a zwitterion, this complex has a net positive charge. Its entry into the vesicle is favored by the imposition of an outwardly directed K+ gradient in the presence of valinomycin. The movement of a quaternary complex of this type across the apical surface of the proximal tubular cell would assure that the movement of both Cl- and the amino acid is energized by the Na+ gradient. Because most amino acids are zwitterions at physiologic pH this complex would be positively charged, favoring entry into the voltage negative renal cell interior.[Abstract] [Full Text] [Related] [New Search]