These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of separate proteolytic and high-affinity binding activities of human thrombin on rapid platelet activation. A quenched-flow study.
    Author: Jones GD, Carty DJ, Freas DL, Spears JT, Gear AR.
    Journal: Biochem J; 1989 Sep 01; 262(2):611-6. PubMed ID: 2803271.
    Abstract:
    We have used a general quenched-flow approach to study platelet function as early as 0.3 s after stimulation with three types of human thrombin: alpha-thrombin, gamma-thrombin, which is proteolytically active but does not bind to the high-affinity sites, and di-isopropyl fluorophosphate-derivatized (DIP)-alpha-thrombin, an active site-inhibited analogue that does bind to the high-affinity site. Large doses of gamma-thrombin evoked moderate aggregation and serotonin release, but minimal phosphorylation of the 20 and 47 kDa proteins. The initial (1.5-3.0 s) increase in cystolic free calcium concentration ([Ca2+]i) indicated by Indo-1 was also diminished, but by 5 s was nearly as high (1.0 microM) as with alpha-thrombin. A large dose of DIP-alpha-thrombin, on the other hand, induced minimal aggregation, serotonin secretion and [Ca2+]i response within 6 s. There was, however, a transient dephosphorylation of the 20 kDa protein. When combined, gamma- and DIP-alpha-thrombin were approximately additive in their ability to induce aggregation and serotonin secretion, but strongly synergistic in phosphorylating the 20 and 47 kDa proteins. The [Ca2+]i increase was not, however, enhanced over that induced by gamma-thrombin alone. These results demonstrate that phosphorylation of either the 20 or 47 kDa proteins is not correlated with [Ca2+]i dynamics and is neither required nor directly involved in platelet aggregation and secretion induced by thrombin. The high-affinity binding activity of thrombin is not necessary for rapid platelet Ca2+ influx, aggregation and serotonin release within the first critical seconds of activation.
    [Abstract] [Full Text] [Related] [New Search]