These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The NLRP3 inflammasome and bruton's tyrosine kinase in platelets co-regulate platelet activation, aggregation, and in vitro thrombus formation.
    Author: Murthy P, Durco F, Miller-Ocuin JL, Takedai T, Shankar S, Liang X, Liu X, Cui X, Sachdev U, Rath D, Lotze MT, Zeh HJ, Gawaz M, Weber AN, Vogel S.
    Journal: Biochem Biophys Res Commun; 2017 Jan 29; 483(1):230-236. PubMed ID: 28034752.
    Abstract:
    Cleavage of interleukin-1β (IL-1β) is a key inflammatory event in immune cells and platelets, which is mediated by nucleotide-binding domain leucine rich repeat containing protein (NLRP3)-dependent activation of caspase-1. In immune cells, NLRP3 and caspase-1 form inflammasome complexes with the adaptor proteins apoptosis-associated speck-like protein containing a CARD (ASC) and bruton's tyrosine kinase (BTK). In platelets, however, the regulatory triggers and the functional effects of the NLRP3 inflammasome are unknown. Here, we show in vitro that the platelet NLRP3 inflammasome contributes to platelet activation, aggregation, and thrombus formation. NLRP3 activity, as monitored by caspase-1 activation and cleavage and secretion of IL-1β, was upregulated in activated platelets, which was dependent on platelet BTK. Pharmacological inhibition or genetic ablation of BTK in platelets led to decreased platelet activation, aggregation, and in vitro thrombus formation. We identify a functionally relevant link between BTK and NLRP3 in platelets, with potential implications in disease states associated with abnormal coagulation and inflammation.
    [Abstract] [Full Text] [Related] [New Search]