These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cloning and characterization of d-threonine aldolase from the green alga Chlamydomonas reinhardtii.
    Author: Hirato Y, Tokuhisa M, Tanigawa M, Ashida H, Tanaka H, Nishimura K.
    Journal: Phytochemistry; 2017 Mar; 135():18-23. PubMed ID: 28038776.
    Abstract:
    d-Threonine aldolase (DTA) catalyzes the pyridoxal 5'-phosphate (PLP)-dependent interconversion of d-threonine and glycine plus acetaldehyde. The enzyme is a powerful tool for the stereospecific synthesis of various β-hydroxy amino acids in synthetic organic chemistry. In this study, DTA from the green alga Chlamydomonas reinhardtii was discovered and characterized, representing the first report to describe the existence of eukaryotic DTA. DTA was overexpressed in recombinant Escherichia coli BL21 (DE3) cells; the specific activity of the enzyme in the cell-free extract was 0.8 U/mg. The recombinant enzyme was purified to homogeneity by ammonium sulfate fractionation, DEAE-Sepharose, and Mono Q column chromatographies (purified enzyme 7.0 U/mg). For the cleavage reaction, the optimal temperature and pH were 70 °C and pH 8.4, respectively. The enzyme demonstrated 90% of residual activity at 50 °C for 1 h. The enzyme catalyzed the synthesis of d- and d-allo threonine from a mixture of glycine and acetaldehyde (the diastereomer excess of d-threonine was 18%). DTA was activated by several divalent metal ions, including manganese, and was inhibited by PLP enzyme inhibitors and metalloenzyme inhibitors.
    [Abstract] [Full Text] [Related] [New Search]