These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Histone H3K9 Demethylase JMJD2B Activates Adipogenesis by Regulating H3K9 Methylation on PPARγ and C/EBPα during Adipogenesis.
    Author: Jang MK, Kim JH, Jung MH.
    Journal: PLoS One; 2017; 12(1):e0168185. PubMed ID: 28060835.
    Abstract:
    Previous studies have shown that tri- or di-methylation of histone H3 at lysine 9 (H3K9me3/me2) on the promoter of the peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) contribute to the repression of PPARγ and C/EBPα and inhibition of adipogenesis in 3T3-L1 preadipocytes. The balance of histone methylation is regulated by histone methyltransferases and demethylases. However, it is poorly understood which demethylases are responsible for removing H3K9me3/me2 on the promoter of PPARγ and C/EBPα. JMJD2B is a H3K9me3/me2 demethylase that was previously shown to activate adipogenesis by promoting mitotic clonal expansion. Nevertheless, it remains unclear whether JMJD2B plays a role in the regulation of adipogenesis by removing H3K9me3/me2 on the promoter of PPARγ and C/EBPα and subsequently activating PPARγ and C/EBPα expression. Here, we showed that JMJD2B decreased H3K9me3/me2 on the promoter of PPARγ and C/EBPα, which in turn stimulated the expression of PPARγ and C/EBPα. JMJD2B knockdown using siRNA in 3T3-L1 preadipocytes repressed the expression of PPARγ and C/EBPα, resulting in inhibition of adipogenesis. This was accompanied by increased enrichment of H3K9me3/me2 on the promoter of PPARγ and C/EBPα. In contrast, overexpression of JMJD2B increased the expression of PPARγ and C/EBPα, which was accompanied by decreased enrichment of H3K9me3/me2 on the promoter and activated adipogenesis. Together, these results indicate that JMJD2B regulates PPARγ and C/EBPα during adipogenesis.
    [Abstract] [Full Text] [Related] [New Search]