These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transcriptome-Wide Mapping of RNA 5-Methylcytosine in Arabidopsis mRNAs and Noncoding RNAs. Author: David R, Burgess A, Parker B, Li J, Pulsford K, Sibbritt T, Preiss T, Searle IR. Journal: Plant Cell; 2017 Mar; 29(3):445-460. PubMed ID: 28062751. Abstract: Posttranscriptional methylation of RNA cytosine residues to 5-methylcytosine (m5C) is an important modification with diverse roles, such as regulating stress responses, stem cell proliferation, and RNA metabolism. Here, we used RNA bisulfite sequencing for transcriptome-wide quantitative mapping of m5C in the model plant Arabidopsis thaliana We discovered more than a thousand m5C sites in Arabidopsis mRNAs, long noncoding RNAs, and other noncoding RNAs across three tissue types (siliques, seedling shoots, and roots) and validated a number of these sites. Quantitative differences in methylated sites between these three tissues suggest tissue-specific regulation of m5C. Perturbing the RNA m5C methyltransferase TRM4B resulted in the loss of m5C sites on mRNAs and noncoding RNAs and reduced the stability of tRNAAsp(GTC) We also demonstrate the importance of m5C in plant development, as trm4b mutants have shorter primary roots than the wild type due to reduced cell division in the root apical meristem. In addition, trm4b mutants show increased sensitivity to oxidative stress. Finally, we provide insights into the targeting mechanism of TRM4B by demonstrating that a 50-nucleotide sequence flanking m5C C3349 in MAIGO5 mRNA is sufficient to confer methylation of a transgene reporter in Nicotiana benthamiana.[Abstract] [Full Text] [Related] [New Search]