These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Radial metal concentration profiles in trees growing on highly contaminated soils. Author: Superville PJ, de Winter N, Phung AT, Proix N, Baeyens W, Gao Y. Journal: Chemosphere; 2017 Apr; 172():80-88. PubMed ID: 28063318. Abstract: The soil around Metaleurop, a big smelter, is heavily contaminated by Zn, Pb, Cd and Cu. In order to compare the impact of different soil amendments on the metal availability to trees, the polluted soil section was divided in a reference parcel and two others with either sulfo-calcic or silico-aluminous ash amendments. Five different tree species were planted on the parcels and the uptake of heavy metals in these trees was studied. Total and labile metal fractions were assessed in each of the 3 parcels. The mobility and assimilation of the metals was highest in the non-amended, reference soil parcel which had the lowest pH, organic matter and carbonate content. In all soils, pH decreased while organic matter content and mobility of the metals increased over time. Highest bulk concentrations of trace metals were found in white willow trees (Salix alba L.). Laser ablation-ICPMS was used to study changes in metal accumulation over a period of 10 years after planting the trees. The radial metal profiles in the trunk core samples varied between elements and tree species, however, in all willow trees the radial Cd and Zn profiles were significantly correlated. Radial pollutant concentration patterns are discussed in terms of seasonal effects, health status, tree species and metal mobility in the soil. For Cd and Zn, the profiles were influenced by their mobility in the soils. In general, periodical patterns were observed for Pb. Cu concentration profiles were decreasing over time, with the strongest decrease in the initial growth period.[Abstract] [Full Text] [Related] [New Search]