These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The mechanism of NLRP3 inflammasome initiation: Trimerization but not dimerization of the NLRP3 pyrin domain induces robust activation of IL-1β. Author: Sušjan P, Roškar S, Hafner-Bratkovič I. Journal: Biochem Biophys Res Commun; 2017 Feb 05; 483(2):823-828. PubMed ID: 28065854. Abstract: NLRP3 inflammasome is a multiprotein platform for the activation of caspase-1. Despite the increasing number of reports linking NLRP3 inflammasome to a variety of diseases, the mechanism behind the NLRP3 activation remains elusive, especially in terms of the early stages which are critical to the NLRP3 inflammasome assembly. In the present study we aimed to determine the minimal oligomerization state required for the NLRP3 inflammasome activation. For this purpose, NLRP3 pyrin domain (NLRP3PYD) was fused to various dimerization and trimerization domains. The constructs were expressed under the inducible promoter in mouse macrophages lacking endogenous NLRP3. Dimerization of the NLRP3PYD either in parallel or in antiparallel orientation was insufficient for the inflammasome activation. Trimerization of the NLRP3PYD with the foldon domain, however, induced pyroptosis and robust IL-1β maturation, which was caspase-1 dependent. Interestingly, foldon-induced constitutive activation is resistant to inhibition with NLRP3-specific inhibitor MCC950 and does not lead to ASC speck formation. Although we cannot exclude that wild-type NLRP3 forms higher oligomer species similar to NLRP1 or NLRC4, our results clearly demonstrate that efficient IL-1β response can be achieved by the induced trimerization of the NLRP3PYD domain.[Abstract] [Full Text] [Related] [New Search]