These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A facile sonochemical synthesis of shell-stabilized reactive microbubbles using surface-thiolated bovine serum albumin with the Traut's reagent. Author: Ma X, Bussonniere A, Liu Q. Journal: Ultrason Sonochem; 2017 May; 36():454-465. PubMed ID: 28069233. Abstract: The short lifetime of proteinaceous microbubbles produced using conventional sonication method has hindered their applications in drug delivery and metal removal from wastewater. In this study, we aimed to synthesize stable proteinaceous microbubbles and to demonstrate their reactivity. Our model protein, bovine serum albumin (BSA) was treated with 2-iminothiolane hydrochloride (Traut's reagent) to convert primary amines to thiols before the synthesis of microbubbles. Microbubbles produced with the Traut's reagent-treated BSA (BSA-SH MBs) were initially concentrated at median sizes of 0.5 and 2.5μm. The 0.5μm portion quickly vanished, and the 2.5μm portion gradually shrank to ∼850nm in ∼3days and became stabilized afterward for several months under 4°C. Characterizations of BSA-SH MBs by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated the presence of free unbound thiols and primary amines on their surface, implying the possibility of further surface modification. Based on the zeta potential measurement, the isoelectric point (IEP) of BSA-SH MBs was determined to be 4.5. The attachments of BSA-SH MBs on alumina, silica, and gold surfaces in different pH environments were carried out with a quartz crystal microbalance with dissipation monitoring (QCM-D), demonstrating the reactivities of BSA-SH MBs. At pH 6, the negatively charged BSA-SH MBs were adsorbed onto the alumina surface by electrostatic interaction. Analogously, at pH 4, the adsorption of the positively charged BSA-SH MBs on the silica surface was confirmed. Compared with the electrostatic interaction, the adsorption of BSA-SH MBs on the gold surface is attributed to the strong gold-thiol bonding effect. This is the first time that a universal approach for stabilizing protein-shelled microbubbles was reported using only one single step of surface treatment of proteins with the Traut's reagent.[Abstract] [Full Text] [Related] [New Search]