These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of neuropeptide Y and pancreatic polypeptide on islet function and beta-cell survival.
    Author: Khan D, Vasu S, Moffett RC, Irwin N, Flatt PR.
    Journal: Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):749-758. PubMed ID: 28069397.
    Abstract:
    BACKGROUND: In the present study we assessed the impact of neuropeptide Y receptor (NPYR) modulators, neuropeptide Y (NPY) and pancreatic polypeptide (PP), on islet function and beta-cell survival. METHODS: The effects of NPY and PP on beta-cell function were examined in BRIN BD11 and 1.1B4 beta-cells, as well as isolated mouse islets. Involvement of both peptides in pancreatic islet adaptations to streptozotocin and hydrocortisone, as well as effects on beta-cell proliferation and apoptosis was also evaluated. RESULTS: Neither NPY nor PP affected in vivo glucose disposal or insulin secretion in mice. However, both peptides inhibited (p<0.05 to p<0.001) glucose stimulated insulin secretion from rat and human beta-cells. NPY exerted similar insulinostatic effects in isolated mouse islets. NPY and PP inhibited alanine-induced changes in BRIN BD11 cell membrane potential and (Ca2+)i. Streptozotocin treatment decreased and hydrocortisone treatment increased beta-cell mass in mice. In addition, streptozotocin, but not hydrocortisone, increased PP cell area. Streptozotocin also shifted the normal co-localisation of NPY with PP, towards more pronounced co-expression with somatostatin in delta-cells. Both streptozotocin and hydrocortisone increased pancreatic exocrine expression of NPY. More detailed in vitro investigations revealed that NPY, but not PP, augmented (p<0.01) BRIN BD11 beta-cell proliferation. In addition, both peptides exerted protective effects against streptozotocin-induced DNA damage in beta-cells. CONCLUSION: These data emphasise the involvement of PP, and particularly NPY, in the regulation of beta-cell mass and function. GENERAL SIGNIFICANCE: Modulation of PP and NPY signalling is suitable for further evaluation and possible clinical development for the treatment of diabetes.
    [Abstract] [Full Text] [Related] [New Search]