These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lipid peroxidation and antioxidant defense systems in rat liver after chronic ethanol feeding. Author: Kawase T, Kato S, Lieber CS. Journal: Hepatology; 1989 Nov; 10(5):815-21. PubMed ID: 2807160. Abstract: The effects of chronic ethanol feeding on hepatic lipid peroxidation, ascorbic acid, glutathione and vitamin E levels were investigated in rats fed low or adequate amounts of dietary vitamin E. Hepatic lipid peroxidation was significantly increased after chronic ethanol feeding in rats receiving a low-vitamin E diet, indicating that dietary vitamin E is an important determinant of hepatic lipid peroxidation induced by chronic ethanol feeding. No significant change was observed in hepatic non-heme iron content, but hepatic content of ascorbic acid and glutathione was increased by ethanol feeding. Both low dietary vitamin E and ethanol feeding significantly reduced hepatic alpha-tocopherol content, and the lowest hepatic alpha-tocopherol was found in rats receiving a combination of low vitamin E and ethanol. Plasma alpha-tocopherol was elevated after ethanol feeding, probably because of the associated hyperlipemia. Both the ratio of plasma alpha-tocopherol/plasma lipid and the red blood cell alpha-tocopherol were reduced by ethanol feeding. Furthermore, ethanol feeding caused a marked increase of hepatic alpha-tocopheryl quinone, a metabolite of alpha-tocopherol by free radical reactions. Ethanol feeding caused little changes of alpha-tocopherol and alpha-tocopheryl quinone content in mitochondria, whereas a striking increase in alpha-tocopheryl quinone was observed in microsomes. These data suggest that ethanol feeding causes a marked alteration of vitamin E metabolism in the liver and that the combination of ethanol with a low-vitamin E intake results in a decrease of hepatic alpha-tocopherol content which renders the liver more susceptible to free radical attack.[Abstract] [Full Text] [Related] [New Search]