These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular characterization and quantification of estrogen receptors in turbot (Scophthalmus maximus).
    Author: Hu P, Meng Z, Jia Y.
    Journal: Gen Comp Endocrinol; 2018 Feb 01; 257():38-49. PubMed ID: 28087301.
    Abstract:
    Estrogens regulate various reproductive processes via estrogen receptor (ER)-mediated signaling pathway in vertebrates. In this study, full-length sequences coding for ERα, ERβ1 and ERβ2 were isolated from female turbot (Scophthalmus maximus) by homology cloning and a strategy based on rapid amplification of cDNA end-polymerase chain reaction (RACE-PCR). The nucleotide and amino acid sequences of turbot ERs showed high homologies with the corresponding sequences of other fish species and significant homology with the Japanese flounder (Paralichthys olivaceus) and the European sea bass (Dicentrarchus labrax). Turbot ERs contained six typical nuclear receptor-characteristic domains and exhibited high evolutionary conservation in the functional domains. Quantitative real-time polymerase chain reaction analysis revealed that the erα and erβ (β1, β2) mRNAs were abundant in the liver and ovary, respectively. Furthermore, hepatic mRNA levels of erα and vitellogenin (vtg) were found increased gradually from pre-vitellogenesis to late-vitellogenesis stages, with the highest values observed at the late-vitellogenesis stage, and then decreased from migratory-nucleus to atresia stages. However, mRNA levels of erα in the ovary remained unchanged during ovarian development. Hepatosomatic index, gonadosomatic index, serum estradiol-17β and the mRNA levels of erβ1 and erβ2 in the ovary manifested results similar to the expression of erα mRNAs in the liver. These findings indicated that ERα is mainly involved in hepatic vitellogenesis, and ERβs may play crucial roles to regulate ovarian development in turbot. Overall, this study improves understanding of the physiological functions of turbot ERs, which will be valuable for fish reproduction and broodstock management.
    [Abstract] [Full Text] [Related] [New Search]