These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid Enrichment of Dehalococcoides-Like Bacteria by Partial Hydrophobic Separation. Author: Temme HR, Sande K, Yan T, Novak PJ. Journal: Appl Environ Microbiol; 2017 Mar 15; 83(6):. PubMed ID: 28087526. Abstract: Organohalide-respiring bacteria can be difficult to enrich and isolate, which can limit research on these important organisms. The goal of this research was to develop a method to rapidly (minutes to days) enrich these organisms from a mixed community. The method presented is based on the hypothesis that organohalide-respiring bacteria would be more hydrophobic than other bacteria as they dehalogenate hydrophobic compounds. The method developed tests this hypothesis by separating a portion of putative organohalide-respiring bacteria, those phylogenetically related to Dehalococcoides mccartyi, at the interface between a hydrophobic organic solvent and an aqueous medium. This novel partial separation technique was tested with a polychlorinated biphenyl-enriched sediment-free culture, a tetrachloroethene-enriched digester sludge culture, and uncontaminated lake sediment. Significantly higher fractions, up to 20.4 times higher, of putative organohalide-respiring bacteria were enriched at the interface between the medium and either hexadecane or trichloroethene. The selective partial separation of these putative organohalide-respiring bacteria occurred after 20 min, strongly suggesting that the separation was a result of physical-chemical interactions between the cell surface and hydrophobic solvent. Dechlorination activity postseparation was verified by the production of cis-dichloroethene when amended with tetrachloroethene. A longer incubation time of 6 days prior to separation with trichloroethene increased the total number of putative organohalide-respiring bacteria. This method provides a way to quickly separate some of the putative organohalide-respiring bacteria from other bacteria, thereby improving our ability to study multiple and different bacteria of potential interest and improving knowledge of these bacteria.IMPORTANCE Organohalide-respiring bacteria, bacteria capable of respiring chlorinated contaminants, can be difficult to enrich, which can limit their predictable use for the bioremediation of contaminated sites. This paper describes a method to quickly separate Dehalococcoides-like bacteria, a group of organisms containing organohalide-respiring bacteria, from other bacteria in a mixed community. From this work, Dehalococcoides-like bacteria appear to have a hydrophobic cell surface, facilitating a rapid (20 min) partial separation from a mixed culture at the surface of a hydrophobic liquid. This method was verified in a polychlorinated biphenyl-enriched sediment-free culture, an anaerobic digester sludge, and uncontaminated sediment. The method described can drastically reduce the amount of time required to partially separate Dehalococcoides-like bacteria from a complex mixed culture, improving researchers' ability to study these important bacteria.[Abstract] [Full Text] [Related] [New Search]