These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of renal denervation on kidney function in patients with chronic kidney disease.
    Author: Hering D, Marusic P, Duval J, Sata Y, Head GA, Denton KM, Burrows S, Walton AS, Esler MD, Schlaich MP.
    Journal: Int J Cardiol; 2017 Apr 01; 232():93-97. PubMed ID: 28089459.
    Abstract:
    AIMS: Renal denervation (RDN) can reduce blood pressure (BP) and slow the decline of renal function in chronic kidney disease (CKD) up to one year. Whether this effect is maintained beyond 12months and whether the magnitude of BP reduction affects estimated glomerular filtration rate (eGFR) is unknown. METHODS AND RESULTS: We examined eGFR in 46 CKD patients (baseline eGFR ≤60mL/min/1.73m2) on a yearly basis from 60months before to 3, 6, 12 and 24months after RDN. Ambulatory BP was measured before and after RDN. Linear mixed models analysis demonstrated a significant progressive decline in eGFR from months 60 to 12months (-15.47±1.98mL/min/1.73m2, P<0.0001) and from 12months to baseline prior to RDN (-3.41±1.64mL/min/1.73m2, P=0.038). Compared to baseline, RDN was associated with improved eGFR at 3months (+3.73±1.64mL/min/1.73m2, P=0.02) and no significant changes at 6 (+2.54±1.66mL/min/1.73m2, P=0.13), 12 (+1.78±1.64mL/min/1.73m2, P=0.28), and 24 (-0.24±2.24mL/min/1.73m2, P=0.91) months post procedure were observed. RDN significantly reduced daytime SBP from baseline to 24months post procedure (148±19 vs 136±17mmHg, P=0.03) for the entire cohort. Changes in SBP were unrelated to the eGFR changes at 6 (r=0.033, P=0.84), 12 (r=0.01, P=0.93) and 24months (r=-0.42, P=0.17) follow-up. CONCLUSION: RDN can slow further deterioration of renal function irrespective of BP lowering effects in CKD. RDN-induced inhibition of sympathetic outflow to the renal vascular bed may account for improved eGFR via alterations of intrarenal and glomerular hemodynamics.
    [Abstract] [Full Text] [Related] [New Search]