These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-protein feeding stimulates renal thromboxane production in rats with streptozocin-induced diabetes.
    Author: Collins DM, Coffman TM, Ruiz P, Klotman PE.
    Journal: J Lab Clin Med; 1989 Nov; 114(5):545-53. PubMed ID: 2809397.
    Abstract:
    In diabetic rats glomerular morphologic damage is exacerbated by feeding a protein-rich diet. Protein feeding alters arachidonic acid metabolism in other models of renal disease, and there is evidence that the arachidonic acid metabolite thromboxane plays a pathophysiologic role in protein-induced renal injury. In this study we evaluated the effect of high-protein feeding on renal thromboxane production, renal hemodynamics, and renal morphologic condition in rats with experimentally induced diabetes. We induced diabetes in male Sprague-Dawley rats by streptozocin administration. Rats then received high (60% casein)- or low (8% casein)-protein diets. Eight to 11 weeks later, clearance of inulin and PAH and renal blood flow were measured. Rats fed 60% casein had higher glomerular filtration rate and renal blood flow than rats fed low-protein diets. Rats fed high-protein diets had more glomerular hypercellularity, tubular hypertrophy, and arteriolar thickening than their protein-restricted counterparts. Renal production of 6-keto-PGF1a and PGE2 was not different between dietary groups. Renal thromboxane production, however, was greater in rats fed 60% protein than in rats fed 8% protein. We conclude that protein feeding stimulates renal thromboxane production and exacerbates morphologic injury in the diabetic rat. Short-term administration of the thromboxane synthetase-inhibitor UK 38,485 did not further increase glomerular filtration rate or renal blood flow in animals fed high protein. Thus thromboxane did not appear to play a role in protein-induced injury in this model by a vasoconstrictive mechanism. Other possible mechanisms by which thromboxane may contribute to the renal damage observed are discussed.
    [Abstract] [Full Text] [Related] [New Search]