These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activin A in combination with ERK1/2 MAPK pathway inhibition sustains propagation of mouse embryonic stem cells.
    Author: Ashida Y, Nakajima-Koyama M, Hirota A, Yamamoto T, Nishida E.
    Journal: Genes Cells; 2017 Feb; 22(2):189-202. PubMed ID: 28097777.
    Abstract:
    The Activin/Nodal/TGF-β signaling pathway plays a major role in maintaining mouse epiblast stem cells (EpiSCs). The EpiSC-maintaining medium, which contains Activin A and bFGF, induces differentiation of mouse embryonic stem cells (ESCs) to EpiSCs. Here, we show that Activin A also has an ability to efficiently propagate ESCs without differentiation to EpiSCs when combined with a MEK inhibitor PD0325901. ESCs cultured in Activin+PD retained high-level expression of naive pluripotency-related transcription factors. Genomewide analysis showed that the gene expression profile of ESCs cultured in Activin+PD resembles that of ESCs cultured in 2i. ESCs cultured in Activin+PD also showed features common to the naive pluripotency of ESCs, including the preferential usage of the Oct4 distal enhancer and the self-renewal response to Wnt pathway activation. Our finding shows a role of Activin/Nodal/TGF-β signaling in stabilizing self-renewal gene regulatory networks in ESCs.
    [Abstract] [Full Text] [Related] [New Search]