These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Diagnosis implications of the whole genome sequencing in a large Lebanese family with hyaline fibromatosis syndrome. Author: Haidar Z, Temanni R, Chouery E, Jithesh P, Liu W, Al-Ali R, Wang E, Marincola FM, Jalkh N, Haddad S, Haidar W, Chouchane L, Mégarbané A. Journal: BMC Genet; 2017 Jan 19; 18(1):3. PubMed ID: 28103792. Abstract: BACKGROUND: Hyaline fibromatosis syndrome (HFS) is a recently introduced alternative term for two disorders that were previously known as juvenile hyaline fibromatosis (JHF) and infantile systemic hyalinosis (ISH). These two variants are secondary to mutations in the anthrax toxin receptor 2 gene (ANTXR2) located on chromosome 4q21. The main clinical features of both entities include papular and/or nodular skin lesions, gingival hyperplasia, joint contractures and osteolytic bone lesions that appear in the first few years of life, and the syndrome typically progresses with the appearance of new lesions. METHODS: We describe five Lebanese patients from one family, aged between 28 and 58 years, and presenting with nodular and papular skin lesions, gingival hyperplasia, joint contractures and bone lesions. Because of the particular clinical features and the absence of a clinical diagnosis, Whole Genome Sequencing (WGS) was carried out on DNA samples from the proband and his parents. RESULTS: A mutation in ANTXR2 (p. Gly116Val) that yielded a diagnosis of HFS was noted. CONCLUSIONS: The main goal of this paper is to add to the knowledge related to the clinical and radiographic aspects of HFS in adulthood and to show the importance of Next-Generation Sequencing (NGS) techniques in resolving such puzzling cases.[Abstract] [Full Text] [Related] [New Search]