These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PINK1 alleviates myocardial hypoxia-reoxygenation injury by ameliorating mitochondrial dysfunction.
    Author: Li Y, Qiu L, Liu X, Hou Z, Yu B.
    Journal: Biochem Biophys Res Commun; 2017 Feb 26; 484(1):118-124. PubMed ID: 28104397.
    Abstract:
    PTEN inducible kinase-1 (PINK1) mutant induces mitochondrial dysfunction of cells, resulting in an inherited form of Parkinson's disease. However its exact role in the cardiomyocytes is unclear. The present study examined the function of PINK1 in hypoxia-reoxygenation (H/R) induced H9c2 cell damage and its potential mechanism. The H/R model in H9c2 cells was established by 6 h of hypoxia and 12 h of reoxygenation. The CCK8 and LDH assay indicated that the cell viability was obviously reduced after H/R. The expression of PINK1 was decreased in H/R-induced H9c2 cells compared with control group. The vector overexpressing PINK1 was constructed to transfect into H/R-induced H9c2 cells. Our results showed that cell viability was increased, cell apoptosis and caspase 3, cytochrome C (Cyto C) levels were decreased after LV-PINK1 transfection. Furthermore, PINK1 overexpression stabilized electron transport chain (ETC) activity, increased ATP production, mPTP opening and mitochondrial membrane potential (MMP), inhibited ROS-generating mitochondria, implying PINK1 alleviates H/R induced mitochondrial dysfunction in cardiomyocytes. In addition, the TRAP-1 siRNA was transfected into PINK1 treated H9c2 cells after H/R to detected the molecular mechanism of PINK1 protecting cardiomyocytes. The results indicated that silence of TRAP-1 reversed the effects of PINK1 in H/R-induced H9c2 cells. In conclusion, these results suggest that PINK1 overexpression alleviates H/R-induced cell damage of H9c2 cells by phosphorylation of TRAP-1, and that is a valid approach for protection from myocardial I/R injury.
    [Abstract] [Full Text] [Related] [New Search]