These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structure, Wettability, and Thermal Stability of Organic Thin-Films on Gold Generated from the Molecular Self-Assembly of Unsymmetrical Oligo(ethylene glycol) Spiroalkanedithiols. Author: Chinwangso P, Lee HJ, Jamison AC, Marquez MD, Park CS, Lee TR. Journal: Langmuir; 2017 Feb 28; 33(8):1751-1762. PubMed ID: 28107018. Abstract: Organic thin-films on gold were prepared from a set of new, custom-designed bidentate alkanethiols possessing a mixture of normal alkane and methoxy-terminated tri(ethylene glycol) chains. The new unsymmetrical spiroalkanedithiol adsorbates were of the form [CH3O(CH2CH2O)3(CH2)5]-[CH3(CH2)n+1]C[CH2SH]2 where n = 3 and 14; designated EG3C7-C7 and EG3C7-C18, respectively. Their corresponding self-assembled monolayers (SAMs) on gold were characterized and compared with monothiol SAMs derived from an analogous normal alkanethiol (C18SH) and an alkanethiol terminated with an oligo(ethylene glycol) (OEG) moiety (i.e., EG3C7SH). Ellipsometric data revealed reduced film thicknesses for the double-chained dithiolate SAMs, which perhaps arose from the phase-incompatible merger of a hydrocarbon chain with an OEG moiety, contributing to disorder in the films and/or an increase in chain tilt. The comparable wettabilities of the SAMs derived from EG3C7SH and EG3C7-C7, using water as the contacting liquid, are consistent with exposure of the OEG moieties at both interfaces, whereas the lower wettability of the SAM derived from EG3C7-C18 is consistent with exposure of hydrocarbon chains at the interface. The data collected by X-ray photoelectron spectroscopy confirmed the formation of the new OEG-terminated dithiolate SAMs, and also revealed them as less densely packed monolayers due in part to the large molecular cross section of the OEG moieties and to their double-chained structure with dual surface bonds. Mixed SAMs formed from pairs of monothiols having chain compositions analogous to those of the chains of the new dithiols showed that an EG3C7SH/heptanethiol-mixed SAM and the EG3C7-C7 SAM produced almost identical characterization data, revealing the favorable film formation dynamics for adsorbate structures where the alkyl chains can assemble beneath the phase-incompatible OEG termini. For the mixed SAM formed from EG3C7SH/C18SH, the data indicate that the EG3C7SH component failed to incorporate in the film, demonstrating that the blending of phase-incompatible chains is sometimes best accomplished when both chains exist on a single adsorbate structure. Furthermore, the results of solution-phase thermal desorption tests revealed that the OEG-terminated films generated from the bidentate EG3C7-C7 and EG3C7-C18 adsorbates exhibit enhanced thermal stability when compared to the film generated from monodentate EG3C7SH. In a brief study of protein adsorption, the multicomponent SAMs showed a greater ability to resist the adsorption of fibrinogen on their surfaces when compared to the SAM derived from C18SH, but not better than the monolayer derived from EG3C7SH.[Abstract] [Full Text] [Related] [New Search]