These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: LetR is a TetR family transcription factor from Lysobacter controlling antifungal antibiotic biosynthesis. Author: Wang P, Chen H, Qian G, Liu F. Journal: Appl Microbiol Biotechnol; 2017 Apr; 101(8):3273-3282. PubMed ID: 28108764. Abstract: Heat-stable antifungal factor (HSAF) is a newly identified and broad-spectrum antifungal antibiotic from Lysobacter enzymogenes, a ubiquitous environmental proteobacterium. Yet, the regulatory mechanism for HSAF biosynthesis in L. enzymogenes remains poorly understood. Here, we report the identification of a TetR-family protein Le1552 (LetR) from L. enzymogenes strain OH11 that is involved in transcriptional repression of HSAF production. Bacterial one-hybrid and gel mobility shift assays show that LetR directly binds to PHSAF (the promoter region of the HSAF biosynthesis operon). A DNA truncation assay further reveals a core region in PHSAF that is responsible for LetR binding. In-frame deletion of letR in wild-type OH11 is found to significantly increase HSAF levels and key biosynthetic gene transcription, while overexpression of letR in the wild-type background remarkably reduces HSAF levels as well as related gene expression instead. Together, we have identified not only a new regulator for the HSAF biosynthesis but also constructed a higher HSAF-producing deletion strain (ΔletR) of L. enzymogenes, which shall be of great value in promoting HSAF production for pharmaceutical and biological control purposes.[Abstract] [Full Text] [Related] [New Search]