These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Susceptibility of naïve and differentiated PC12 cells to Japanese encephalitis virus infection.
    Author: Li JR, Wu CC, Chang CY, Ou YC, Lin SY, Wang YY, Chen WY, Raung SL, Liao SL, Chen CJ.
    Journal: IUBMB Life; 2017 Feb; 69(2):79-87. PubMed ID: 28111888.
    Abstract:
    Japanese encephalitis is a mosquito-borne disease caused by Japanese encephalitis virus (JEV) infection. Although JEV infects and replicates in cells with multiple tissue origins, neurons are the preferential cells for JEV infection. Currently, the identities of JEV cell tropism are largely unclear. To gain better insight into the underlying identities of JEV cell tropism, this study was designed to compare the JEV cell tropism with naïve or differentiated PC12 cells. Through nerve growth factor-differentiated PC12 cells, we discovered that JEV efficiently replicated in differentiated PC12 cells rather than naïve cells. Mechanistic studies revealed that viral adsorption/attachment seemed not to be a crucial factor. Supporting data showed that antagonizing postreceptor intracellular signaling of interferons, along with the activation of suppressor of cytokine signaling-3 (SOCS3) expression and protein tyrosine phosphatase activity, were apparent in differentiated PC12 cells after JEV infection. Independent of differentiating inducing agents, the upregulation of SOCS3 expression and protein tyrosine phosphatase activity, as well as preferential JEV tropism, were common in JEV-infected differentiated PC12 cells. Using cultured primary neurons, JEV efficiently replicated in embryonic neurons rather than adult neurons, and the preference was accompanied by higher SOCS3 expression and protein tyrosine phosphatase activity. Given that both SOCS3 and protein tyrosine phosphatases have been implicated in the process of neuronal differentiation, JEV infection seems to not only create an antagonizing strategy to escape host's interferon antiviral response but also takes advantage of cellular machinery to favor its replication. Taken together, current findings imply that dynamic changes within cellular regulators of antiviral machinery could be accompanied by events of neuronal differentiation, thus concurrently playing roles in the control of JEV cell tropism and replication. © 2017 IUBMB Life, 69(2):79-87, 2017.
    [Abstract] [Full Text] [Related] [New Search]