These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Orbitofrontal Cortex Signals Expected Outcomes with Predictive Codes When Stable Contingencies Promote the Integration of Reward History.
    Author: Riceberg JS, Shapiro ML.
    Journal: J Neurosci; 2017 Feb 22; 37(8):2010-2021. PubMed ID: 28115481.
    Abstract:
    Memory can inform goal-directed behavior by linking current opportunities to past outcomes. The orbitofrontal cortex (OFC) may guide value-based responses by integrating the history of stimulus-reward associations into expected outcomes, representations of predicted hedonic value and quality. Alternatively, the OFC may rapidly compute flexible "online" reward predictions by associating stimuli with the latest outcome. OFC neurons develop predictive codes when rats learn to associate arbitrary stimuli with outcomes, but the extent to which predictive coding depends on most recent events and the integrated history of rewards is unclear. To investigate how reward history modulates OFC activity, we recorded OFC ensembles as rats performed spatial discriminations that differed only in the number of rewarded trials between goal reversals. The firing rate of single OFC neurons distinguished identical behaviors guided by different goals. When >20 rewarded trials separated goal switches, OFC ensembles developed stable and anticorrelated population vectors that predicted overall choice accuracy and the goal selected in single trials. When <10 rewarded trials separated goal switches, OFC population vectors decorrelated rapidly after each switch, but did not develop anticorrelated firing patterns or predict choice accuracy. The results show that, whereas OFC signals respond rapidly to contingency changes, they predict choices only when reward history is relatively stable, suggesting that consecutive rewarded episodes are needed for OFC computations that integrate reward history into expected outcomes.SIGNIFICANCE STATEMENT Adapting to changing contingencies and making decisions engages the orbitofrontal cortex (OFC). Previous work shows that OFC function can either improve or impair learning depending on reward stability, suggesting that OFC guides behavior optimally when contingencies apply consistently. The mechanisms that link reward history to OFC computations remain obscure. Here, we examined OFC unit activity as rodents performed tasks controlled by contingencies that varied reward history. When contingencies were stable, OFC neurons signaled past, present, and pending events; when contingencies were unstable, past and present coding persisted, but predictive coding diminished. The results suggest that OFC mechanisms require stable contingencies across consecutive episodes to integrate reward history, represent predicted outcomes, and inform goal-directed choices.
    [Abstract] [Full Text] [Related] [New Search]