These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of Different Surfaces and Insecticide Carriers on Residual Insecticide Bioassays Against Bed Bugs, Cimex spp. (Hemiptera: Cimicidae). Author: Dang K, Singham GV, Doggett SL, Lilly DG, Lee CY. Journal: J Econ Entomol; 2017 Apr 01; 110(2):558-566. PubMed ID: 28115498. Abstract: The performance of five insecticides (bendiocarb, deltamethrin, DDT, malathion, and imidacloprid) using three application methods (oil-based insecticide films on filter paper, and acetone-based insecticide deposits on two substrates: filter paper and glass) was assessed against a susceptible strain of Cimex lectularius (L.) and two resistant strains of Cimex hemipterus (F.). Substrate type significantly affected (P < 0.05) the insecticide knockdown response of the susceptible strain in acetone-based insecticide bioassays, with longer survival time on filter paper than on the glass surface. With the exception of deltamethrin, the different diluents (oil and acetone) also significantly affected (P < 0.05) the insecticide knockdown response of the susceptible strain in the filter paper-based insecticide bioassays, with longer survival time with acetone as the diluent. For both strains of C. hemipterus, there were no significant effects with the different surfaces and diluents for all insecticides except for malathion and imidacloprid, which was largely due to high levels of resistance. The lower effectiveness for the insecticide acetone-based treatment on filter paper may be due to crystal bloom. This occurs when an insecticide, dissolved in a volatile solvent, is applied onto absorptive surfaces. The effect is reduced on nonabsorptive surfaces and slowed down with oil-based insecticides, whereby the oil forms a film on absorptive surfaces. These findings suggest that nonabsorptive surfaces should be used in bioassays to monitor insecticide resistance. If absorptive surfaces are used in bioassays for testing active ingredients, then oil-based insecticides should be preferably used.[Abstract] [Full Text] [Related] [New Search]