These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Label-Free Electrochemical Biosensor Based on a Reduced Graphene Oxide and Indole-5-Carboxylic Acid Nanocomposite for the Detection of Klebsiella pneumoniae.
    Author: Zhang Z, Yu HW, Wan GC, Jiang JH, Wang N, Liu ZY, Chang D, Pan HZ.
    Journal: J AOAC Int; 2017 Mar 01; 100(2):548-552. PubMed ID: 28118564.
    Abstract:
    A label-free DNA hybridization electrochemical sensor for the detection of Klebsiella pneumoniae was developed, which could be helpful in the diagnosis of bacterial infections. Indole-5-carboxylic acid (ICA) and graphene oxide (GO) were electrodeposited on a glassy carbon electrode, and the resulting reduced GO (rGO)-ICA hybrid film served as a platform for immobilizing oligonucleotides on a single-stranded DNA (ssDNA) sequence. The conditions were optimized, with excellent electrochemical performance. A significant change was observed after hybridization of ssDNA with the target probe under optimum conditions. Hybridization with complementary, noncomplementary, one-base mismatched, and three-base mismatched DNA targets was studied effectively by differential pulse voltammetry. The proposed strategy could detect target DNA down to 3 × 10-11 M, with a linear range from 1 × 10-6 M to 1 × 10-10 M, showing high sensitivity. This electrochemical method is simple, free from indicator, and shows good selectivity. Hence, electrochemical biosensors are successfully demonstrated for the detection of K. pneumoniae.
    [Abstract] [Full Text] [Related] [New Search]