These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transporting bovine oocytes in a medium supplemented with different macromolecules and antioxidants: Effects on nuclear and cytoplasmic maturation and embryonic development in vitro. Author: Ambrogi M, Dall'Acqua PC, Rocha-Frigoni N, Leão B, Mingoti GZ. Journal: Reprod Domest Anim; 2017 Jun; 52(3):409-421. PubMed ID: 28120355. Abstract: We investigated whether supplementing the medium used to transport bovine oocytes with different macromolecules [foetal calf serum (FCS) or bovine serum albumin (BSA)] or a mixture of antioxidants (cysteine, cysteamine and catalase) affects their nuclear and cytoplasmic maturation and thereby affects their subsequent embryonic development and cryotolerance. Oocytes were transported for 6 hr in a portable incubator and then subjected to standard in vitro maturation (IVM) for 18 hr. The oocytes in the control groups were cultured (standard IVM) for 24 hr in medium containing 10% FCS (Control FCS) or 10% FCS and the antioxidant mixture (Control FCS+Antiox). The intracellular concentrations of reactive oxygen species (ROS) at the end of IVM period were lower in the oocytes subjected to simulated transport in the presence of a macromolecular supplement or the antioxidant mixture than that of the control group (FCS: 0.62 and BSA: 0.66 vs. Control FCS: 1.00, p < .05; and Transp: 0.58 and Transp Antiox: 0.70 vs. Control FCS: 1.00, p < .05). After IVM, the mitochondrial membrane potentials of the transported oocytes were lower than those of the non-transported oocytes (FCS: 0.41 and BSA: 0.57 vs. Control FCS: 1.00, p < .05; and Transp: 0.48 and Transp Antiox: 0.51 vs. Control FCS: 1.00 and Control Antiox: 0.84, p < .05). The blastocyst formation rates (36.9% average) and the re-expansion rates of vitrified-warmed blastocysts (53%, average) were unaffected (p > .05) by the treatments. In conclusion, supplementing the medium in which bovine oocytes are transported with antioxidants or different macromolecules did not affect their in vitro production of embryos or their cryotolerance.[Abstract] [Full Text] [Related] [New Search]