These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Excellent Thermoelectric Properties in monolayer WSe2 Nanoribbons due to Ultralow Phonon Thermal Conductivity.
    Author: Wang J, Xie F, Cao XH, An SC, Zhou WX, Tang LM, Chen KQ.
    Journal: Sci Rep; 2017 Jan 25; 7():41418. PubMed ID: 28120912.
    Abstract:
    By using first-principles calculations combined with the nonequilibrium Green's function method and phonon Boltzmann transport equation, we systematically investigate the influence of chirality, temperature and size on the thermoelectric properties of monolayer WSe2 nanoribbons. The results show that the armchair WSe2 nanoribbons have much higher ZT values than zigzag WSe2 nanoribbons. The ZT values of armchair WSe2 nanoribbons can reach 1.4 at room temperature, which is about seven times greater than that of zigzag WSe2 nanoribbons. We also find that the ZT values of WSe2 nanoribbons increase first and then decrease with the increase of temperature, and reach a maximum value of 2.14 at temperature of 500 K. It is because the total thermal conductance reaches the minimum value at 500 K. Moreover, the impact of width on the thermoelectric properties in WSe2 nanoribbons is not obvious, the overall trend of ZT value decreases lightly with the increasing temperature. This trend of ZT value originates from the almost constant power factor and growing phonon thermal conductance.
    [Abstract] [Full Text] [Related] [New Search]