These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Opposing Roles of Acetylation and Phosphorylation in LIFR-Dependent Self-Renewal Growth Signaling in Mouse Embryonic Stem Cells.
    Author: Wang XJ, Qiao Y, Xiao MM, Wang L, Chen J, Lv W, Xu L, Li Y, Wang Y, Tan MD, Huang C, Li J, Zhao TC, Hou Z, Jing N, Chin YE.
    Journal: Cell Rep; 2017 Jan 24; 18(4):933-946. PubMed ID: 28122243.
    Abstract:
    LIF promotes self-renewal of mouse embryonic stem cells (mESCs), and in its absence, the cells differentiate. LIF binds to the LIF receptor (LIFR) and activates the JAK-STAT3 pathway, but it remains unknown how the receptor complex triggers differentiation or self-renewal. Here, we report that the LIFR cytoplasmic domain contains a self-renewal domain within the juxtamembrane region and a differentiation domain within the C-terminal region. The differentiation domain contains four SPXX repeats that are phosphorylated by MAPK to restrict STAT3 activation; the self-renewal domain is characterized by a 3K motif that is acetylated by p300. In mESCs, acetyl-LIFR undergoes homodimerization, leading to STAT3 hypo- or hyper-activation depending on the presence or absence of gp130. LIFR-activated STAT3 restricts differentiation via cytokine induction. Thus, LIFR acetylation and serine phosphorylation differentially promote stem cell self-renewal and differentiation.
    [Abstract] [Full Text] [Related] [New Search]