These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Feasibility of automated titration of vasopressor infusions using a novel closed-loop controller. Author: Rinehart J, Ma M, Calderon MD, Cannesson M. Journal: J Clin Monit Comput; 2018 Feb; 32(1):5-11. PubMed ID: 28124225. Abstract: Blood pressure management is a central concern in critical care patients. For a variety of reasons, titration of vasopressor infusions may be an ideal use-case for computer assistance. Using our previous experience gained in the bench-to-bedside development of a computer-assisted fluid management system, we have developed a novel controller for this purpose. The aim of this preliminary study was to assess the feasibility of using this controller in simulated patients to maintain a target blood pressure in both stable and variable blood-pressure scenarios. We tested the controller in two sets of simulation scenarios: one with stable underlying blood pressure and a second with variable underlying blood pressure. In addition, in the variable phase of the study, we tested infusion-line delays of 8-60 s. The primary outcome for both testing conditions (stable and variable) was % case time in target range. We determined a priori that acceptable performance on the first phase of the protocol would require greater than 95% case-time in-target given the simple nature of the protocol, and for the second phase of the study 80% or greater given the erratic nature of the blood pressure changes taking place. 250 distinct cases for each simulation condition, both managed and unmanaged, were run over 4 days. In the stable hemodynamic conditions, the unmanaged group had an MAP of 57.5 ± 4.6 mmHg and spent only 5.6% of case time in-target. The managed group had an MAP of 70.3 ± 2.6 and spent a total of 99.5% of case time in-target (p < 0.00001 for both comparisons between groups). In the variable hemodynamic conditions, the unmanaged group had an MAP of 53.1 ± 5.0 mmHg and spent 0% of case time in-target. The managed group had an MAP of 70.5 ± 3.2 mmHg (p < 0.00001 compared to unmanaged group) and spent 88.6% of case time in-target (p < 0.00001 compared to unmanaged group), with 6.4% of case time over and 5.1% of case time under target. Increasing infusion lag increased coefficient of variation by about 10% per 15 s of lag (p = 0.001). This study demonstrated that this novel controller for vasopressor administration is able to main a target mean arterial pressure in a simulated physiologic model in the face of random disturbances and infusion-line lag.[Abstract] [Full Text] [Related] [New Search]