These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein-Assisted Formation of Molybdenum Heterometallic Clusters: Evidence for the Formation of S2MoS2-M-S2MoS2 Clusters with M = Fe, Co, Ni, Cu, or Cd within the Orange Protein. Author: Maiti BK, Maia LB, Pauleta SR, Moura I, Moura JJ. Journal: Inorg Chem; 2017 Feb 20; 56(4):2210-2220. PubMed ID: 28128558. Abstract: The Orange Protein (ORP) is a small bacterial protein, of unknown function, that harbors a unique molybdenum/copper (Mo/Cu) heterometallic cluster, [S2MoVIS2CuIS2MoVIS2]3-, noncovalently bound. The apo-ORP is able to promote the formation and stabilization of this cluster, using CuII- and MoVIS42- salts as starting metallic reagents, to yield a Mo/Cu-ORP that is virtually identical to the native ORP. In this work, we explored the ORP capability of promoting protein-assisted synthesis to prepare novel protein derivatives harboring molybdenum heterometallic clusters containing iron, cobalt, nickel, or cadmium in place of the "central" copper (Mo/Fe-ORP, Mo/Co-ORP, Mo/Ni-ORP, or Mo/Cd-ORP). For that, the previously described protein-assisted synthesis protocol was extended to other metals and the Mo/M-ORP derivatives (M = Cu, Fe, Co, Ni, or Cd) were spectroscopically (UV-visible and electron paramagnetic resonance (EPR)) characterized. The Mo/Cu-ORP and Mo/Cd-ORP derivatives are stable under oxic conditions, while the Mo/Fe-ORP, Mo/Co-ORP, and Mo/Ni-ORP derivatives are dioxygen-sensitive and stable only under anoxic conditions. The metal and protein quantification shows the formation of 2Mo:1M:1ORP derivatives, and the visible spectra suggest that the expected {S2MoS2MS2MoS2} complexes are formed. The Mo/Cu-ORP, Mo/Co-ORP, and Mo/Cd-ORP are EPR-silent. The Mo/Fe-ORP derivative shows an EPR S = 3/2 signal (E/D ≈ 0.27, g ≈ 5.3, 2.5, and 1.7 for the lower M= ±1/2 doublet, and g ≈ 5.7 and 1.7 (1.3 predicted) for the upper M = ±3/2 doublet), consistent with the presence of either one S = 5/2 FeIII antiferromagnetically coupled to two S = 1/2 MoV or one S = 3/2 FeI and two S = 0 MoVI ions, in both cases in a tetrahedral geometry. The Mo/Ni-ORP shows an EPR axial S = 1/2 signal consistent with either one S = 1/2 NiI and two S = 0 MoVI or one S = 1/2 NiIII antiferromagnetically coupled to two S = 1/2 MoV ions, in both cases in a square-planar geometry. The Mo/Cu-ORP and Mo/Cd-ORP are described as {MoVI-CuI-MoVI} and {MoVI-CdII-MoVI}, respectively, while the other derivatives are suggested to exist in at least two possible electronic structures, {MoVI-MI-MoVI} ↔ {MoV-MIII-MoV}.[Abstract] [Full Text] [Related] [New Search]