These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: RXRα ligand Z-10 induces PML-RARα cleavage and APL cell apoptosis through disrupting PML-RARα/RXRα complex in a cAMP-independent manner. Author: Xu L, Zeng Z, Zhang W, Ren G, Ling X, Huang F, Xie P, Su Y, Zhang XK, Zhou H. Journal: Oncotarget; 2017 Feb 14; 8(7):12311-12322. PubMed ID: 28129653. Abstract: The major oncogenic driver of acute promyelocytic leukemia (APL) is the fusion protein PML-RARα originated from the chromosomal translocation t(15;17). All-trans retinoic acid (ATRA) and arsenic trioxide cure most patients by directly targeting PML-RARα. However, major issues including the resistance of ATRA and arsenic therapy still remain in APL clinical management. Here we showed that compound Z-10, a nitro-ligand of retinoid X receptor α (RXRα), strongly promoted the cAMP-independent apoptosis of both ATRA- sensitive and resistant NB4 cells via the induction of caspase-mediated PML-RARα degradation. RXRα was vital for the stability of both PML-RARα and RARα likely through the interactions. The binding of Z-10 to RXRα dramatically inhibited the interaction of RXRα with PML-RARα but not with RARα, leading to Z-10's selective induction of PML-RARα but not RARα degradation. Z-36 and Z-38, two derivatives of Z-10, had improved potency of inducing PML-RARα reduction and NB4 cell apoptosis. Hence, RXRα ligand Z-10 and its derivatives could target both ATRA- sensitive and resistant APL cells through their distinct acting mechanism, and are potential drug leads for APL treatment.[Abstract] [Full Text] [Related] [New Search]