These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of Caco-2 cells co-expressing CYP3A4 and NADPH-cytochrome P450 reductase using a human artificial chromosome for the prediction of intestinal extraction ratio of CYP3A4 substrates. Author: Takenaka T, Kazuki K, Harada N, Kuze J, Chiba M, Iwao T, Matsunaga T, Abe S, Oshimura M, Kazuki Y. Journal: Drug Metab Pharmacokinet; 2017 Feb; 32(1):61-68. PubMed ID: 28139373. Abstract: The Caco-2 cells co-expressing cytochrome P450 (CYP) 3A4 and NADPH-cytochrome P450 reductase (CPR) were developed using a human artificial chromosome (HAC) vector. The CYP3A4 and CPR genes were cloned into the HAC vector in CHO cells using the Cre-loxP system, and the microcell-mediated chromosome transfer technique was used to transfer the CYP3A4-CPR-HAC vector to Caco-2 cells. After seeding onto semipermeable culture inserts, the CYP3A4-CPR-HAC/Caco-2 cells were found to form tight monolayers, similar to the parental cells, as demonstrated by the high transepithelial electrical resistance (TEER) value and comparable permeability of non-CYP3A4 substrates between parent and CYP3A4-CPR-HAC/Caco-2 cell monolayers. The metabolic activity of CYP3A4 (midazolam 1'-hydroxylase activity) in the CYP3A4-CPR-HAC/Caco-2 cells was constant from 22 to 35 passages, indicating that HAC vectors conferred sufficient and sustained CYP3A4 activity to CYP3A4-CPR-HAC/Caco-2 cells. The strong relationship between the metabolic extraction ratios (ER) obtained from the CYP3A4-CPR-HAC/Caco-2 cells and calculated intestinal extraction ratios in humans (Eg) from reported intestinal availability (Fg) was found for 17 substrates of CYP3A4 (r2 = 0.84). The present study suggests that the CYP3A4-CPR-HAC/Caco-2 cell monolayer can serve as an in vitro tool that facilitates the prediction of intestinal extraction ratio (or availability) in humans.[Abstract] [Full Text] [Related] [New Search]