These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Archaea and bacteria mediate the effects of native species root loss on fungi during plant invasion.
    Author: Mamet SD, Lamb EG, Piper CL, Winsley T, Siciliano SD.
    Journal: ISME J; 2017 May; 11(5):1261-1275. PubMed ID: 28140393.
    Abstract:
    Although invasive plants can drive ecosystem change, little is known about the directional nature of belowground interactions between invasive plants, native roots, bacteria, archaea and fungi. We used detailed bioinformatics and a recently developed root assay on soils collected in fescue grassland along a gradient of smooth brome (Bromus inermis Leyss) invasion to examine the links between smooth brome shoot litter and root, archaea, bacteria and fungal communities. We examined (1) aboveground versus belowground influences of smooth brome on soil microbial communities, (2) the importance of direct versus microbe-mediated impacts of plants on soil fungal communities, and (3) the web of roots, shoots, archaea, bacteria and fungi interactions across the A and B soil horizons in invaded and non-invaded sites. Archaea and bacteria influenced fungal composition, but not vice versa, as indicated by redundancy analyses. Co-inertia analyses suggested that bacterial-fungal variance was driven primarily by 12 bacterial operational taxonomic units (OTUs). Brome increased bacterial diversity via smooth brome litter in the A horizon and roots in the B horizon, which then reduced fungal diversity. Archaea increased abundance of several bacterial OTUs, and the key bacterial OTUs mediated changes in the fungi's response to invasion. Overall, native root diversity loss and bacterial mediation were more important drivers of fungal composition than were the direct effects of increases in smooth brome. Critically, native plant species displacement and root loss appeared to be the most important driver of fungal composition during invasion. This causal web likely gives rise to the plant-fungi feedbacks, which are an essential factor determining plant diversity in invaded grassland ecosystems.
    [Abstract] [Full Text] [Related] [New Search]