These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Equilibrium and kinetics study on removal of arsenate ions from aqueous solution by CTAB/TiO2 and starch/CTAB/TiO2 nanoparticles: a comparative study.
    Author: Gogoi P, Dutta D, Maji TK.
    Journal: J Water Health; 2017 Feb; 15(1):58-71. PubMed ID: 28151440.
    Abstract:
    We present a comparative study on the efficacy of TiO2 nanoparticles for arsenate ion removal after modification with CTAB (N-cetyl-N,N,N-trimethyl ammonium bromide) followed by coating with starch biopolymer. The prepared nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), thermogravimetry, scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDX). The removal efficiency was studied as a function of contact time, material dose and initial As(V) concentration. CTAB-modified TiO2 showed the highest arsenate ion removal rate (∼99% from 400 μg/L). Starch-coated CTAB-modified TiO2 was found to be best for regeneration. For a targeted solution of 400 μg/L, a material dose of 2 g/L was found to be sufficient to reduce the As(V) concentration below 10 μg/L. Equilibrium was established within 90 minutes of treatment. The sorption pattern followed a Langmuir monolayer pattern, and the maximum sorption capacity was found to be 1.024 mg/g and 1.423 mg/g after starch coating and after CTAB modification, respectively. The sorption mechanisms were governed by pseudo second order kinetics.
    [Abstract] [Full Text] [Related] [New Search]