These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effects of low tidal ventilation on lung strain correlate with respiratory system compliance.
    Author: Xie J, Jin F, Pan C, Liu S, Liu L, Xu J, Yang Y, Qiu H.
    Journal: Crit Care; 2017 Feb 03; 21(1):23. PubMed ID: 28159013.
    Abstract:
    BACKGROUND: The effect of alterations in tidal volume on mortality of acute respiratory distress syndrome (ARDS) is determined by respiratory system compliance. We aimed to investigate the effects of different tidal volumes on lung strain in ARDS patients who had various levels of respiratory system compliance. METHODS: Nineteen patients were divided into high (Chigh group) and low (Clow group) respiratory system compliance groups based on their respiratory system compliance values. We defined compliance ≥0.6 ml/(cmH2O/kg) as Chigh and compliance <0.6 ml/(cmH2O/kg) as Clow. End-expiratory lung volumes (EELV) at various tidal volumes were measured by nitrogen wash-in/washout. Lung strain was calculated as the ratio between tidal volume and EELV. The primary outcome was that lung strain is a function of tidal volume in patients with various levels of respiratory system compliance. RESULTS: The mean baseline EELV, strain and respiratory system compliance values were 1873 ml, 0.31 and 0.65 ml/(cmH2O/kg), respectively; differences in all of these parameters were statistically significant between the two groups. For all participants, a positive correlation was found between the respiratory system compliance and EELV (R = 0.488, p = 0.034). Driving pressure and strain increased together as the tidal volume increased from 6 ml/kg predicted body weight (PBW) to 12 ml/kg PBW. Compared to the Chigh ARDS patients, the driving pressure was significantly higher in the Clow patients at each tidal volume. Similar effects of lung strain were found for tidal volumes of 6 and 8 ml/kg PBW. The "lung injury" limits for driving pressure and lung strain were much easier to exceed with increases in the tidal volume in Clow patients. CONCLUSIONS: Respiratory system compliance affected the relationships between tidal volume and driving pressure and lung strain in ARDS patients. These results showed that increasing tidal volume induced lung injury more easily in patients with low respiratory system compliance. TRIAL REGISTRATION: Clinicaltrials.gov identifier NCT01864668 , Registered 21 May 2013.
    [Abstract] [Full Text] [Related] [New Search]