These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Study of the factors influencing the metals solubilisation from a mixture of waste batteries by response surface methodology.
    Author: Tanong K, Coudert L, Chartier M, Mercier G, Blais JF.
    Journal: Environ Technol; 2017 Dec; 38(24):3167-3179. PubMed ID: 28162038.
    Abstract:
    This paper presents an innovative process for the recovery of valuable metals from a mixture of spent batteries. Different types of batteries, including alkaline, zinc-carbon (Zn-C), nickel cadmium (Ni-Cd), nickel metal hydride (Ni-MH), lithium ion (Li-ion) and lithium metallic (Li-M) batteries, were mixed according to the proportion of the Canadian sales of batteries. A Box-Behnken design was applied to find the optimum leaching conditions allowing a maximum of valuable metal removals from a mixture of spent batteries in the presence of an inorganic acid and a reducing agent. The results highlighted the positive effect of sodium metabisulfite on the performance of metals removal, especially for Mn. The solid/liquid ratio and the concentration of H2SO4 were the main factors affecting the leaching behavior of valuable metals (Zn, Mn, Cd, Ni) present in spent batteries. Finally, the optimum leaching conditions were found as follows: one leaching step, solid/liquid ratio = 10.9%, [H2SO4] = 1.34 M, sodium metabisulfite (Na2S2O5) = 0.45 g/g of battery powder and retention time = 45 min. Under such conditions, the removal yields achieved were 94% for Mn, 81% for Cd, 99% for Zn, 96% for Co and 68% for Ni.
    [Abstract] [Full Text] [Related] [New Search]