These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Water Stability Studies of Hybrid Iodoargentates Containing N-Alkylated or N-Protonated Structure Directing Agents: Exploring Noncentrosymmetric Hybrid Structures.
    Author: Liu GN, Jiang XM, Fan QS, Hussain MB, Li K, Sun H, Li XY, Liu WQ, Li C.
    Journal: Inorg Chem; 2017 Feb 20; 56(4):1906-1918. PubMed ID: 28169534.
    Abstract:
    In situ alkylation or protonation reactions on the thiazolyl-N donors of benzothiazole (btz) and its derivative 2-aminobenzothiazole (abtz) occurred to form four structure directing agents (SDAs), which feature different structure directing abilities and hydrophobicities. The thiazolyl-N alkylated and protonated btz cations direct to form an α-type (AgI2)- iodoargentate chain in (Etbtz)(AgI2) (1), (Prbtz)(AgI2) (2), and (Hbtz)(AgI2) (3), respectively, while the thiazolyl-N protonated abtz cation directs to form a new type of (Ag2I3)- anionic chain in (Habtz)(Ag2I3) (4). Compounds 1 and 4 represent the first noncentrosymmetric (NCS) hybrid iodoargentates with organic S-containing N-heterocycle derivative cations as SDAs. Further, 1 exhibits high water stability and is second harmonic generation (SHG) active with a response about twice that of KDP (KH2PO4). Importantly, the water stability studies indicate that hybrid iodoargentates with hydrophobic N-alkylated SDAs are more stable in water than those with relative hydrophilic N-protonated SDAs.
    [Abstract] [Full Text] [Related] [New Search]