These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The novel oral glucan synthase inhibitor SCY-078 shows in vitro activity against sessile and planktonic Candida spp. Author: Marcos-Zambrano LJ, Gómez-Perosanz M, Escribano P, Bouza E, Guinea J. Journal: J Antimicrob Chemother; 2017 Jul 01; 72(7):1969-1976. PubMed ID: 28175309. Abstract: OBJECTIVES: We studied the antifungal activity of SCY-078 (an orally bioavailable 1,3-β -d- glucan synthesis inhibitor), micafungin and fluconazole against the planktonic and sessile forms of 178 Candida and non- Candida isolates causing fungaemia in patients recently admitted to a large European hospital. METHODS: The in vitro activity of SCY-078, micafungin and fluconazole against the planktonic form of the isolates was assessed using EUCAST EDef 7.3 and CLSI M27-A3. Antibiofilm activity was assessed using the XTT reduction assay. RESULTS: SCY-078 and micafungin showed potent in vitro activity against Candida and non- Candida isolates. The in vitro activity of both drugs was similar, but SYC-078 displayed significantly lower MIC values than micafungin against Candida parapsilosis and non- Candida isolates, whereas micafungin displayed significantly lower MIC values for the remaining species ( P <0.001). In contrast, SCY-078 and micafungin showed essentially the same activity against the biofilms with the exception of Candida glabrata , in which the micafungin sessile MIC values were significantly lower ( P <0.001). These observations were confirmed by assessing biofilm structure by scanning electron microscopy after antifungal treatment. CONCLUSIONS: Our study showed that the high in vitro activity of SCY-078 against invasive Candida isolates in both sessile and planktonic forms is comparable to that of micafungin.[Abstract] [Full Text] [Related] [New Search]