These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of Rho kinase protects from ischaemia-reperfusion injury via regulation of arginase activity and nitric oxide synthase in type 1 diabetes. Author: Tratsiakovich Y, Kiss A, Gonon AT, Yang J, Sjöquist PO, Pernow J. Journal: Diab Vasc Dis Res; 2017 May; 14(3):236-245. PubMed ID: 28183205. Abstract: AIM: RhoA/Rho-associated kinase and arginase are implicated in vascular complications in diabetes. This study investigated whether RhoA/Rho-associated kinase and arginase inhibition protect from myocardial ischaemia-reperfusion injury in type 1 diabetes and the mechanisms behind these effects. METHODS: Rats with streptozotocin-induced type 1 diabetes and non-diabetic rats were subjected to 30 min myocardial ischaemia and 2 h reperfusion after being randomized to treatment with (1) saline, (2) RhoA/Rho-associated kinase inhibitor hydroxyfasudil, (3) nitric oxide synthase inhibitor NG-monomethyl-l-arginine monoacetate followed by hydroxyfasudil, (4) arginase inhibitor N-omega-hydroxy-nor-l-arginine, (5) NG-monomethyl-l-arginine monoacetate followed by N-omega-hydroxy-nor-l-arginine or (6) NG-monomethyl-l-arginine monoacetate given intravenous before ischaemia. RESULTS: Myocardial arginase activity, arginase 2 expression and RhoA/Rho-associated kinase activity were increased in type 1 diabetes ( p < 0.05). RhoA/Rho-associated kinase inhibition and arginase inhibition significantly reduced infarct size in diabetic and non-diabetic rats ( p < 0.001). The cardioprotective effects of hydroxyfasudil and N-omega-hydroxy-nor-l-arginine in diabetes were abolished by nitric oxide synthase inhibition. RhoA/Rho-associated kinase inhibition attenuated myocardial arginase activity in diabetic rats via a nitric oxide synthase-dependent mechanism. CONCLUSION: Inhibition of either RhoA/Rho-associated kinase or arginase protects from ischaemia-reperfusion injury in rats with type 1 diabetes via a nitric oxide synthase-dependent pathway. These results suggest that inhibition of RhoA/Rho-associated kinase and arginase constitutes a potential therapeutic strategy to protect the diabetic heart against ischaemia-reperfusion injury.[Abstract] [Full Text] [Related] [New Search]