These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The Relation Between Long-Term Synaptic Plasticity at Glutamatergic Synapses in the Amygdala and Fear Learning in Adult Heterozygous BDNF-Knockout Mice.
    Author: Meis S, Endres T, Munsch T, Lessmann V.
    Journal: Cereb Cortex; 2018 Apr 01; 28(4):1195-1208. PubMed ID: 28184413.
    Abstract:
    Brain-derived neurotrophic factor (BDNF) heterozygous knockout mice (BDNF+/- mice) show fear learning deficits from 3 months of age onwards. Here, we addressed the question how this learning deficit correlates with altered long-term potentiation (LTP) in the cortical synaptic input to the lateral amygdala (LA) and at downstream intra-amygdala synapses in BDNF+/- mice. Our results reveal that the fear learning deficit in BDNF+/- mice was not paralleled by a loss of LTP, neither at cortical inputs to the LA nor at downstream intra-amygdala glutamatergic synapses. As we did observe early fear memory (30 min after training) in BDNF+/- mice while long-term memory (24 h post-training) was absent, the stable LTP in cortico-LA and downstream synapses is in line with the intact acquisition of fear memories. Ex vivo recordings in acute slices of fear-conditioned wildtype (WT) mice revealed that fear learning induces long-lasting changes at cortico-LA synapses that occluded generation of LTP 4 and 24 h after training. Overall, our data show that the intact LTP in the tested amygdala circuits is consistent with intact acquisition of fear memories in both WT and BDNF+/- mice. In addition, the lack of learning-induced long-term changes at cortico-LA synapses in BDNF+/- mice parallels the observed deficit in fear memory consolidation.
    [Abstract] [Full Text] [Related] [New Search]