These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular characterization of myostatin from the skeletal muscle of the African lungfish, Protopterus annectens, and changes in its mRNA and protein expression levels during three phases of aestivation. Author: Ong JL, Chng YR, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Ip YK. Journal: J Comp Physiol B; 2017 May; 187(4):575-589. PubMed ID: 28184997. Abstract: African lungfishes can aestivate and remain torpid without food and water for years, but disuse muscle atrophy is not prominent during aestivation. This study aimed to clone myostatin (mstn/Mstn), a factor associated with disuse muscle atrophy in mammals, from the skeletal muscle of the African lungfish Protopterus annectens, and to determine its mRNA expression level and protein abundance therein during the induction, maintenance, and arousal phases of aestivation. The complete coding cDNA sequence of mstn comprised 1128 bp, encoding for 376 amino acids with an estimated molecular mass of 42.9 kDa. It was grouped together with Mstn/MSTN of coelacanth and tetrapods in a clade separated from teleost Mstn. After 6 days (the induction phase) of aestivation, the mstn transcript level in the muscle increased significantly, while the protein abundance of Mstn remained comparable to the control. Following that, a significant increase in the expression levels of mstn/Mstn occurred on day 12 (the early maintenance phase) of aestivation. After 6 months of aestivation (the prolonged maintenance phase), the expression levels of mstn/Mstn returned to control levels, indicating the possible impediment of a drastic increase in muscle degradation to prevent muscle atrophy. During 1-3 days of arousal from aestivation, the expression levels of mstn/Mstn in the muscle remained comparable to the control. Hence, tissue reconstruction/regeneration of certain organs might not involve the mobilization of amino acids from the muscle during the early arousal. These results provide insights into how aestivating P. annectens regulates the expression of mstn/Mstn possibly to ameliorate disuse muscle atrophy.[Abstract] [Full Text] [Related] [New Search]