These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isotrifoliol inhibits pro-inflammatory mediators by suppression of TLR/NF-κB and TLR/MAPK signaling in LPS-induced RAW264.7 cells.
    Author: Li H, Yoon JH, Won HJ, Ji HS, Yuk HJ, Park KH, Park HY, Jeong TS.
    Journal: Int Immunopharmacol; 2017 Apr; 45():110-119. PubMed ID: 28192731.
    Abstract:
    Soybeans, produced by Glycine max (L.) Merr., contain high levels of isoflavones, such as genistein and daidzein. However, soy leaves contain more diverse and abundant flavonol glycosides and coumestans, as compared to the soybean. This study investigated the anti-inflammatory effects of the major coumestans present in soy leaf (coumestrol, isotrifoliol, and phaseol) in lipopolysaccharide (LPS)-induced RAW264.7 cells. Coumestans significantly reduced LPS-induced nitric oxide (NO), prostaglandin E2 (PGE2), and reactive oxygen species (ROS) production; isotrifoliol had the most potent anti-inflammatory activity. Isotrifoliol reduced LPS-mediated induction of mRNA expression of inducible nitric-oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-1β, IL-6, tumor necrosis factor alpha (TNFα), and chemokines, such as chemokine (C-C motif) ligand (CCL) 2, CCL3, and CCL4. Isotrifoliol prevented NF-κB p65 subunit activation by reducing the phosphorylation and degradation of the inhibitor of NF-κB. And isotrifoliol significantly suppressed phosphorylation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK). Furthermore, isotrifoliol suppressed LPS-induced Toll-like Receptor (TLR) signaling pathway, including mRNA expression of TNF receptor associated factor 6, transforming growth factor beta-activated kinase 1 (TAK1), TAK1 binding protein 2 (TAB2), and TAB3. These results demonstrate that isotrifoliol exerts an anti-inflammatory effect by suppressing the expression of inflammatory mediators via inhibition of TLR/NF-κB and TLR/MAPK signaling in LPS-induced RAW264.7 macrophages. Therefore, isotrifoliol can be used as an anti-inflammatory agent, and coumestan-rich soy leaf extracts may provide a useful dietary supplement.
    [Abstract] [Full Text] [Related] [New Search]