These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PdCu@Pd Nanocube with Pt-like Activity for Hydrogen Evolution Reaction.
    Author: Li J, Li F, Guo SX, Zhang J, Ma J.
    Journal: ACS Appl Mater Interfaces; 2017 Mar 08; 9(9):8151-8160. PubMed ID: 28198611.
    Abstract:
    The electronic properties of metal surfaces can be modulated to weaken the binding energy of adsorbed H-intermediates on the catalyst surface, thus enhancing catalytic activity for the hydrogen evolution reaction (HER). Here we first prepare PdCu alloy nanocubes (NCs) by coreduction of Cu(acac)2 (acac = acetylacetonate) and Na2PdCl4 in the presence of oleylamine (OAm) and trioctylphosphine (TOP). The PdCu NC coated glassy carbon electrode is then anodized at a constant potential of 0.51 V vs Ag/AgCl at room temperature in 0.5 M H2SO4 solution for 10 s, which converts PdCu NCs into core@shell PdCu@Pd NCs that show much enhanced Pt-like activity for the HER and much more robust durability. The improvements in surface property and HER activity are rationalized based on strain and ligand effects that enhance the activity of the edge-exposed Pd atoms on core@shell PdCu@Pd structure. This work opens up a new perspective for simultaneously reducing metal Pd cost and achieving excellent performance toward the HER.
    [Abstract] [Full Text] [Related] [New Search]