These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Skeletal muscle and liver contain a soluble ATP + ubiquitin-dependent proteolytic system.
    Author: Fagan JM, Waxman L, Goldberg AL.
    Journal: Biochem J; 1987 Apr 15; 243(2):335-43. PubMed ID: 2820375.
    Abstract:
    Although protein breakdown in most cells seems to require metabolic energy, it has only been possible to establish a soluble ATP-dependent proteolytic system in extracts of reticulocytes and erythroleukemia cells. We have now succeeded in demonstrating in soluble extracts and more purified preparations from rabbit skeletal muscle a 12-fold stimulation by ATP of breakdown of endogenous proteins and a 6-fold stimulation of 125I-lysozyme degradation. However, it has still not been possible to demonstrate such large effects of ATP in similar preparations from liver. Nevertheless, after fractionation by DEAE-chromatography and gel filtration, we found that extracts from liver as well as muscle contain both the enzymes which conjugate ubiquitin to 125I-lysozyme and an enzyme which specifically degrades the ubiquitin-protein conjugates. When this proteolytic activity was recombined with the conjugating enzymes, ATP + ubiquitin-dependent degradation of many proteins was observed. This proteinase is unusually large, approx. 1500 kDa, requires ATP hydrolysis for activity and resembles the ubiquitin-protein-conjugate degrading activity isolated from reticulocytes. Thus the ATP + ubiquitin-dependent pathway is likely to be present in all mammalian cells, although certain tissues may contain inhibitory factors.
    [Abstract] [Full Text] [Related] [New Search]