These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Terminal Titanyl Complexes of Tri- and Tetrametaphosphate: Synthesis, Structures, and Reactivity with Hydrogen Peroxide. Author: Stauber JM, Cummins CC. Journal: Inorg Chem; 2017 Mar 06; 56(5):3022-3029. PubMed ID: 28207244. Abstract: The synthesis and characterization of tri- and tetrametaphosphate titanium(IV) oxo and peroxo complexes is described. Addition of 0.5 equiv of [OTi(acac)2]2 to dihydrogen tetrametaphosphate ([P4O12H2]2-) and monohydrogen trimetaphosphate ([P3O9H]2-) provided a bis(μ2,κ2,κ2) tetrametaphosphate titanyl dimer, [OTiP4O12]24- (1; 70% yield), and a trimetaphosphate titanyl acetylacetonate complex, [OTiP3O9(acac)]2- (2; 59% yield). Both 1 and 2 have been structurally characterized, crystallizing in the triclinic P1̅ and monoclinic P21 space groups, respectively. These complexes contain Ti≡O units with distances of 1.624(7) and 1.644(2) Å, respectively, and represent rare examples of structurally characterized terminal titanyls within an all-oxygen coordination environment. Complexes 1 and 2 react with hydrogen peroxide to produce the corresponding peroxotitanium(IV) metaphosphate complexes [O2TiP4O12]24-(3; 61% yield) and [O2TiP3O9(acac)]2- (4; 65% yield), respectively. Both 3 and 4 have been characterized by single-crystal X-ray diffraction studies, and their solid-state structures are presented. Complex 3 functions as an oxygen atom transfer (OAT) reagent capable of oxidizing phosphorus(III) compounds (P(OMe)3, PPh3) and SMe2 at ambient temperature to result in the corresponding organic oxide with regeneration of dimer 1.[Abstract] [Full Text] [Related] [New Search]