These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of dog thyroid epithelial cell cycle by forskolin, an adenylate cyclase activator.
    Author: Roger PP, Servais P, Dumont JE.
    Journal: Exp Cell Res; 1987 Oct; 172(2):282-92. PubMed ID: 2820768.
    Abstract:
    Dog thyroid epithelial follicular cells in primary culture are quiescent in an insulin-supplemented serum-free medium. They are induced, after a 16- to 20-h prereplicative phase, to synthesize DNA upon stimulation by forskolin, a general adenylate cyclase activator that mimics all the effects of thyrotropin in these cells. The characteristics of adenylate cyclase activation by forskolin make this drug a convenient tool to enhance cellular cyclic AMP levels for well-defined periods of the cell cycle, allowing determination of which parts of the prereplicative phase are controlled by cyclic AMP. We observe that induction of DNA synthesis by forskolin requires its continuous presence for most of the prereplicative phase until a point that little precedes the initiation of DNA replication. Before this point, interruptions in forskolin presence as short as 2 h delay the onset of DNA synthesis, indicating a rapid regression of the cells to an earlier part of G1 from which they can be rescued by forskolin readdition. Similar delays in the onset of S phase are also induced by reversible protein synthesis inhibitions using pulses of cycloheximide. These data suggest that in dog thyrocytes elevated cyclic AMP levels stimulate the progression into G1 phase until a late commitment point before DNA synthesis. This progression depends on peculiarly labile cyclic AMP-stimulated events which might well be the induction by cyclic AMP of the synthesis of labile proteins.
    [Abstract] [Full Text] [Related] [New Search]