These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Methotrexate efflux in L1210 cells. Kinetic and specificity properties of the efflux system sensitive to bromosulfophthalein and its possible identity with a system which mediates the efflux of 3',5'-cyclic AMP. Author: Henderson GB, Tsuji JM. Journal: J Biol Chem; 1987 Oct 05; 262(28):13571-8. PubMed ID: 2820975. Abstract: Methotrexate exits L1210 mouse leukemia cells via multiple routes that include a unidirectional efflux component which is sensitive to bromosulfophthalein. This efflux component has been characterized in the present study after eliminating the contribution from the other efflux routes by treatment of the cells with an active ester of methotrexate and by reducing the assay pH to 6.2. The remaining efflux at pH 6.2 was greater than 90% sensitive to bromosulfophthalein. This route was also inhibited by probenecid, prostaglandin A1, diamide, 1-methyl-3-isobutylxanthine, various metabolic inhibitors, and by transfer of the cells to a buffer containing high concentrations of KCl. The inhibition by prostaglandin A1 was exceptionally potent and reached 50% at a concentration of 0.5 microM. An enhancement in efflux occurred upon the addition of glucose or by transfer of the cells to a non-saline buffer. When parameters relating to cellular energetics were measured, a reduction in ATP level was associated with the inhibition of efflux by probenecid, carbonylcyanide m-chlorophenylhydrazone, valinomycin, and antimycin A, whereas the increase in efflux by glucose was accompanied by an increase in intracellular ATP. Changes in ATP, however, were not associated with the inhibition by various other compounds or additions or with the enhancement in efflux by the non-anionic buffer. When the relative sensitivity of methotrexate efflux to bromosulfophthalein, 4,4'-diisothiocyanostilbene-2,2'-disulfonate, and lactic anhydride was compared with other anion transport systems, differences in specificity indicated that methotrexate was not exiting the cells via the bicarbonate/chloride exchange carrier, the lactate/H+ co-transport system, or a system which mediates the efflux of phthalate. However, a correlation was apparent between the sensitivity of methotrexate efflux to inhibition by prostaglandin A1, probenecid, and certain metabolic inhibitors and the ability of these same compounds to inhibit the unidirectional efflux of 3',5'-cyclic AMP in other cell lines, suggesting that methotrexate may share a common efflux route with cyclic nucleotides.[Abstract] [Full Text] [Related] [New Search]